Ultra-wideband filtering of spoof surface plasmon polaritons using deep subwavelength planar structures
نویسندگان
چکیده
Novel ultra-wideband filtering of spoof surface plasmon polaritons (SPPs) is proposed in the microwave frequency using deep subwavelength planar structures printed on thin and flexible dielectric substrate. The proposed planar SPPs waveguide is composed of two mirror-oriented metallic corrugated strips, which are further decorated with parallel-arranged slots in the main corrugated strips. This compound structure provides deep subwavelength field confinement as well as flexible parameters when employed as a plasmonic waveguide, which is potential to construct miniaturization. Using momentum and impedance matching technology, we achieve a smooth conversion between the proposed SPPs waveguide and the conventional transmission line. To verify the validity of the design, we fabricate a spoof SPPs filter, and the measured results illustrate excellent performance, in which the reflection coefficient is less than -10 dB within the -3 dB passband from 1.21 GHz to 7.21 GHz with the smallest insertion loss of 1.23 dB at 2.21 GHz, having very good agreements with numerical simulations. The ultra-wideband filter with low insertion loss and high transmission efficiency possesses great potential in modern communication systems.
منابع مشابه
Strongly Confined Spoof Surface Plasmon Polaritons Waveguiding Enabled by Planar Staggered Plasmonic Waveguides
We demonstrate a novel route to achieving highly efficient and strongly confined spoof surface plasmon polaritons (SPPs) waveguides at subwavelength scale enabled by planar staggered plasmonic waveguides (PSPWs). The structure of these new waveguides consists of an ultrathin metallic strip with periodic subwavelength staggered double groove arrays supported by a flexible dielectric substrate, l...
متن کاملDesigner spoof surface plasmon structures collimate terahertz laser beams.
Surface plasmons have found a broad range of applications in photonic devices at visible and near-infrared wavelengths. In contrast, longer-wavelength surface electromagnetic waves, known as Sommerfeld or Zenneck waves, are characterized by poor confinement to surfaces and are therefore difficult to control using conventional metallo-dielectric plasmonic structures. However, patterning the surf...
متن کاملSpoof surface plasmon polaritons in terahertz transmission through subwavelength hole arrays analyzed by coupled oscillator model
Both the localized resonance and excitation of spoof surface plasmon polaritons are observed in the terahertz transmission spectra of periodic subwavelength hole arrays. Analyzing with the coupled oscillator model, we find that the terahertz transmission is actually facilitated by three successive processes: the incident terahertz field first initiates the localized oscillation around each hole...
متن کاملWideband helicity dependent spoof surface plasmon polaritons coupling metasurface based on dispersion design
The surface plasmon polaritons (SPPs) have many potential application due to their local field enhancement and sub-wavelength characteristics. Recently, the gradient metasurface is introduced to couple the spoof SPPs in microwave frequency band. One of the most important issue which should be solved is the narrowband of spoof SPPs coupling on the gradient metasurface. Here, the metasurface is p...
متن کاملLeaky-Wave Radiations by Modulating Surface Impedance on Subwavelength Corrugated Metal Structures
One-dimensional (1D) subwavelength corrugated metal structures has been described to support spoof surface plasmon polaritons (SPPs). Here we demonstrate that a periodically modulated 1D subwavelength corrugated metal structure can convert spoof SPPs to propagating waves. The structure is fed at the center through a slit with a connected waveguide on the input side. The subwavelength corrugated...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016